Cargando…

Calculating Quenching Weights

We calculate the probability (``quenching weight'') that a hard parton radiates an additional energy fraction due to scattering in spatially extended QCD matter. This study is based on an exact treatment of finite in-medium path length, it includes the case of a dynamically expanding mediu...

Descripción completa

Detalles Bibliográficos
Autores principales: Salgado, Carlos A., Wiedemann, Urs Achim
Lenguaje:eng
Publicado: 2003
Materias:
Acceso en línea:https://dx.doi.org/10.1103/PhysRevD.68.014008
http://cds.cern.ch/record/606301
Descripción
Sumario:We calculate the probability (``quenching weight'') that a hard parton radiates an additional energy fraction due to scattering in spatially extended QCD matter. This study is based on an exact treatment of finite in-medium path length, it includes the case of a dynamically expanding medium, and it extends to the angular dependence of the medium-induced gluon radiation pattern. All calculations are done in the multiple soft scattering approximation (Baier-Dokshitzer-Mueller-Peign\'e-Schiff--Zakharov ``BDMPS-Z''-formalism) and in the single hard scattering approximation (N=1 opacity approximation). By comparison, we establish a simple relation between transport coefficient, Debye screening mass and opacity, for which both approximations lead to comparable results. Together with this paper, a CPU-inexpensive numerical subroutine for calculating quenching weights is provided electronically. To illustrate its applications, we discuss the suppression of hadronic transverse momentum spectra in nucleus-nucleus collisions. Remarkably, the kinematic constraint resulting from finite in-medium path length reduces significantly the transverse momentum dependence of the nuclear modification factor, thus leading to consistency with the data measured at the Relativistic Heavy Ion Collider (RHIC).