Cargando…
Bunch Frequency Multiplication by RF Injection into an Isochronous Ring
The Compact LInear Collider (CLIC)collaboration studies the possibility of building a multi-TeV (3 TeV centre-of-mass), high-luminosity electron-positron collider for particle physics. The CLIC scheme is based on high-frequency (30 GHz) linear accelerators powered by a low-energy, high-intensity dri...
Autor principal: | |
---|---|
Lenguaje: | eng |
Publicado: |
CERN
2003
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/608083 |
_version_ | 1780900148540342272 |
---|---|
author | Royer, P |
author_facet | Royer, P |
author_sort | Royer, P |
collection | CERN |
description | The Compact LInear Collider (CLIC)collaboration studies the possibility of building a multi-TeV (3 TeV centre-of-mass), high-luminosity electron-positron collider for particle physics. The CLIC scheme is based on high-frequency (30 GHz) linear accelerators powered by a low-energy, high-intensity drive beam running parallel to the main linear accelerators (Two-Beam Acceleration concept). One of the main challenges to realize this scheme is to generate the drive beam in a low-frequency accelerator and to achieve the required high-frequency bunch structure needed for the final acceleration. In order to provide bunch frequency multiplication, the main manipulation consists in sending the beam through an isochronous combiner ring using radio-frequency (RF) deflectors to inject and combine electron bunches. However, such a scheme has never been used before, and the first stage of the CLIC Test Facility 3 (CTF3) project aims at a low-charge demonstration of the bunch frequency multiplication by RF injection into an isochronous ring. This proof-of-principle experiment, which was successfully performed at CERN in 2002 using a modified version of the LEP (Large Electron Positron) pre-injector complex, is the central subject of this report. The bunch combination experiment consists in accelerating in a linear accelerator five pulses in which the electron bunches are spaced by 10~cm, and combining them in an isochronous ring to obtain one pulse in which the electron bunches are spaced by 2 cm, thus achieving a bunch frequency multiplication of a factor five, and increasing the charge per pulse by a factor five. The combination is done by means of RF deflecting cavities that create a time-dependent bump inside the ring, thus allowing the interleaving of the bunches of the five pulses. This process imposes several beam dynamics constraints, such as isochronicity, and specific tolerances on the electron bunches that are defined in this report. The design studies of the CTF3 Preliminary Phase are detailed, with emphasis on the novel injection process using RF deflectors. The high power tests performed on the RF deflectors prior to their installation in the ring are also reported. The commissioning activity is presented by comparing beam measurements to model simulations and theoretical expectations. Eventually, the bunch frequency multiplication experiments are described and analysed. It is shown that the process of bunch frequency multiplication is feasible with a very good efficiency after a careful optimisation of the injection and RF deflector parameters. In addition to the experience acquired in the operation of these RF deflectors, important conclusions for future CTF3 and CLIC activities are drawn from this first demonstration of the bunch frequency multiplication by RF injection into an isochronous ring. |
id | cern-608083 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2003 |
publisher | CERN |
record_format | invenio |
spelling | cern-6080832019-09-30T06:29:59Zhttp://cds.cern.ch/record/608083engRoyer, PBunch Frequency Multiplication by RF Injection into an Isochronous RingAccelerators and Storage RingsThe Compact LInear Collider (CLIC)collaboration studies the possibility of building a multi-TeV (3 TeV centre-of-mass), high-luminosity electron-positron collider for particle physics. The CLIC scheme is based on high-frequency (30 GHz) linear accelerators powered by a low-energy, high-intensity drive beam running parallel to the main linear accelerators (Two-Beam Acceleration concept). One of the main challenges to realize this scheme is to generate the drive beam in a low-frequency accelerator and to achieve the required high-frequency bunch structure needed for the final acceleration. In order to provide bunch frequency multiplication, the main manipulation consists in sending the beam through an isochronous combiner ring using radio-frequency (RF) deflectors to inject and combine electron bunches. However, such a scheme has never been used before, and the first stage of the CLIC Test Facility 3 (CTF3) project aims at a low-charge demonstration of the bunch frequency multiplication by RF injection into an isochronous ring. This proof-of-principle experiment, which was successfully performed at CERN in 2002 using a modified version of the LEP (Large Electron Positron) pre-injector complex, is the central subject of this report. The bunch combination experiment consists in accelerating in a linear accelerator five pulses in which the electron bunches are spaced by 10~cm, and combining them in an isochronous ring to obtain one pulse in which the electron bunches are spaced by 2 cm, thus achieving a bunch frequency multiplication of a factor five, and increasing the charge per pulse by a factor five. The combination is done by means of RF deflecting cavities that create a time-dependent bump inside the ring, thus allowing the interleaving of the bunches of the five pulses. This process imposes several beam dynamics constraints, such as isochronicity, and specific tolerances on the electron bunches that are defined in this report. The design studies of the CTF3 Preliminary Phase are detailed, with emphasis on the novel injection process using RF deflectors. The high power tests performed on the RF deflectors prior to their installation in the ring are also reported. The commissioning activity is presented by comparing beam measurements to model simulations and theoretical expectations. Eventually, the bunch frequency multiplication experiments are described and analysed. It is shown that the process of bunch frequency multiplication is feasible with a very good efficiency after a careful optimisation of the injection and RF deflector parameters. In addition to the experience acquired in the operation of these RF deflectors, important conclusions for future CTF3 and CLIC activities are drawn from this first demonstration of the bunch frequency multiplication by RF injection into an isochronous ring.CERNCERN-THESIS-2003-007oai:cds.cern.ch:6080832003 |
spellingShingle | Accelerators and Storage Rings Royer, P Bunch Frequency Multiplication by RF Injection into an Isochronous Ring |
title | Bunch Frequency Multiplication by RF Injection into an Isochronous Ring |
title_full | Bunch Frequency Multiplication by RF Injection into an Isochronous Ring |
title_fullStr | Bunch Frequency Multiplication by RF Injection into an Isochronous Ring |
title_full_unstemmed | Bunch Frequency Multiplication by RF Injection into an Isochronous Ring |
title_short | Bunch Frequency Multiplication by RF Injection into an Isochronous Ring |
title_sort | bunch frequency multiplication by rf injection into an isochronous ring |
topic | Accelerators and Storage Rings |
url | http://cds.cern.ch/record/608083 |
work_keys_str_mv | AT royerp bunchfrequencymultiplicationbyrfinjectionintoanisochronousring |