Cargando…
N=2 Sigma Model with Twisted Mass and Superpotential: Central Charges and Solitons
We consider supersymmetric sigma models on the Kahler target spaces, with twisted mass. The Kahler spaces are assumed to have holomorphic Killing vectors. Introduction of a superpotential of a special type is known to be consistent with N=2 superalgebra (Alvarez-Gaume and Freedman). We show that the...
Autores principales: | , |
---|---|
Lenguaje: | eng |
Publicado: |
2003
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1103/PhysRevD.68.045006 http://cds.cern.ch/record/611235 |
Sumario: | We consider supersymmetric sigma models on the Kahler target spaces, with twisted mass. The Kahler spaces are assumed to have holomorphic Killing vectors. Introduction of a superpotential of a special type is known to be consistent with N=2 superalgebra (Alvarez-Gaume and Freedman). We show that the algebra acquires central charges in the anticommutators {Q_L, Q_L} and {Q_R, Q_R}. These central charges have no parallels, and they can exist only in two dimensions. The central extension of the N=2 superalgebra we found paves the way to a novel phenomenon -- spontaneous breaking of a part of supersymmetry. In the general case 1/2 of supersymmetry is spontaneously broken (the vacuum energy density is positive), while the remaining 1/2 is realized linearly. In the model at hand the standard fermion number is not defined, so that the Witten index as well as the Cecotti-Fendley-Intriligator-Vafa index are useless. We show how to construct an index for counting short multiplets in internal algebraic terms which is well-defined in spite of the absence of the standard fermion number. Finally, we outline derivation of the quantum anomaly in {\bar Q_L, Q_R}. |
---|