Cargando…

On k-String Tensions and Domain Walls in N=1 Gluodynamics

We discuss the k dependence of the k-string tension sigma_k in SU(N) supersymmetric gluodynamics. As well known, at large N the k-string consists, to leading order, of k noninteracting fundamental strings, so that sigma_k=k sigma_1. We argue, both from field-theory and string-theory side, that suble...

Descripción completa

Detalles Bibliográficos
Autores principales: Armoni, A., Shifman, M.
Lenguaje:eng
Publicado: 2003
Materias:
Acceso en línea:https://dx.doi.org/10.1016/S0550-3213(03)00409-7
http://cds.cern.ch/record/613137
Descripción
Sumario:We discuss the k dependence of the k-string tension sigma_k in SU(N) supersymmetric gluodynamics. As well known, at large N the k-string consists, to leading order, of k noninteracting fundamental strings, so that sigma_k=k sigma_1. We argue, both from field-theory and string-theory side, that subleading corrections to this formula run in powers of 1/N^2 rather than 1/N, thus excluding the Casimir scaling. We suggest a heuristic model allowing one to relate the k-string tension in four-dimensional gluodynamics with the tension of the BPS domain walls (k-walls). In this model the domain walls are made of a net of strings connected to each other by baryon vertices. The relation emerging in this way leads to the sine formula sigma_ k ~ Lambda^2 N sin pi k/N. We discuss possible corrections to the sine law, and present arguments that they are suppressed by 1/k factors. We explain why the sine law does not hold in two dimensions. Finally, we discuss the applicability of the sine formula for non-supersymmetric orientifold field theories.