Cargando…
Energy deposition limits in a Nb$_{3}$Sn separation dipole placed in front of the LHC high-luminosity inner triplet
Interaction region inner triplets are among the systems which may limit the LHC performance. An option for a new higher luminosity IR is a double-bore inner triplet with separation dipoles placed in front of the first quadrupole. The radiation load on the first dipole, resulting from pp-interactions...
Autores principales: | , , , , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2003
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/620195 |
Sumario: | Interaction region inner triplets are among the systems which may limit the LHC performance. An option for a new higher luminosity IR is a double-bore inner triplet with separation dipoles placed in front of the first quadrupole. The radiation load on the first dipole, resulting from pp-interactions, is a key parameter to determine the feasibility of this approach. Detailed energy deposition calculations were performed with the MARS14 code for two Nb_3Sn dipole designs with no superconductor on the mid-plane. Comparison of peak power densities with those in the baseline LHC IR suggests that it may be possible to develop workable magnets for luminosities up to 10^35 cm^_2 s^_1. |
---|