Cargando…
Renormalization group flows and continual Lie algebras
We study the renormalization group flows of two-dimensional metrics in sigma models and demonstrate that they provide a continual analogue of the Toda field equations based on the infinite dimensional algebra G(d/dt;1). The resulting Toda field equation is a non-linear generalization of the heat equ...
Autor principal: | Bakas, Ioannis |
---|---|
Lenguaje: | eng |
Publicado: |
2003
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1088/1126-6708/2003/08/013 http://cds.cern.ch/record/629442 |
Ejemplares similares
-
Poisson-Lie T-Duality beyond the classical level and the renormalization group
por: Sfetsos, K
Publicado: (1998) -
The algebraic structure of geometric flows in two dimensions
por: Bakas, Ioannis
Publicado: (2005) -
Analytic continuation of functional renormalization group equations
por: Floerchinger, Stefan
Publicado: (2011) -
Invariant Differential Operators for Non-Compact Lie Algebras Parabolically Related to Conformal Lie Algebras
por: Dobrev, V.K.
Publicado: (2012) -
Renormalization Flow of Bound States
por: Gies, Holger, et al.
Publicado: (2001)