Cargando…
The $B \to \pi K$ Puzzle and its Relation to Rare B and K Decays
The Standard-Model interpretation of the ratios of charged and neutral B-> pi K rates, R_c and R_n, respectively, points towards a puzzling picture. Since these observables are affected significantly by colour-allowed electroweak (EW) penguins, this ``B -> pi K puzzle'' could be a ma...
Autores principales: | , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2003
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1140/epjc/s2003-01379-9 http://cds.cern.ch/record/640522 |
Sumario: | The Standard-Model interpretation of the ratios of charged and neutral B-> pi K rates, R_c and R_n, respectively, points towards a puzzling picture. Since these observables are affected significantly by colour-allowed electroweak (EW) penguins, this ``B -> pi K puzzle'' could be a manifestation of new physics in the EW penguin sector. Performing the analysis in the R_n-R_c plane, which is very suitable for monitoring various effects, we demonstrate that we may, in fact, move straightforwardly to the experimental region in this plane through an enhancement of the relevant EW penguin parameter q. We derive analytical bounds for q in terms of a quantity L, that measures the violation of the Lipkin sum rule, and point out that strong phases around 90 deg are favoured by the data, in contrast to QCD factorisation. The B -> pi K modes imply a correlation between q and the angle gamma that in the limit of negligible rescattering effects and colour suppressed EW penguins depends only on the value of L. Concentrating on a minimal flavour-violating new-physics scenario with enhanced Z^0 penguins, we find that the current experimental values on B -> X_s mu^+ mu^- require roughly L <= 1.8. As the B -> pi K data give L = 5.7 +- 2.4, L has either to move to smaller values once the B -> pi K data improve or new sources of flavour and CP violation are needed. In turn, the enhanced values of L seen in the B -> pi K data could be accompanied by enhanced branching ratios for rare decays. Most interesting turns out to be the correlation between the B -> pi K modes and BR(K^+ -> pi^+ nu nu), with the latter depending approximately on a single ``scaling'' variable \bar L= L (|V_{ub}/V_{cb}|/0.086)^2.3. |
---|