Cargando…

QCD at zero baryon density

While the grand canonical partition function Z_{GC}(mu) with chemical potential mu explicitly breaks the Z_3 symmetry with the Dirac determinant, the canonical partition function at fixed baryon number Z_C(B) is manifestly Z_3-symmetric. We compare Z_{GC}(mu=0) and Z_C(B=0) formally and by numerical...

Descripción completa

Detalles Bibliográficos
Autores principales: Kratochvila, Slavo, de Forcrand, Philippe
Lenguaje:eng
Publicado: 2003
Materias:
Acceso en línea:https://dx.doi.org/10.1016/S0920-5632(03)02632-X
http://cds.cern.ch/record/644058
_version_ 1780900798985666560
author Kratochvila, Slavo
de Forcrand, Philippe
author_facet Kratochvila, Slavo
de Forcrand, Philippe
author_sort Kratochvila, Slavo
collection CERN
description While the grand canonical partition function Z_{GC}(mu) with chemical potential mu explicitly breaks the Z_3 symmetry with the Dirac determinant, the canonical partition function at fixed baryon number Z_C(B) is manifestly Z_3-symmetric. We compare Z_{GC}(mu=0) and Z_C(B=0) formally and by numerical simulations, in particular with respect to properties of the deconfinement transition. Differences between the two ensembles, for physical observables characterising the phase transition, vanish with increasing lattice size. We show numerically that the free energy density is the same for both ensembles in the thermodynamic limit.
id cern-644058
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2003
record_format invenio
spelling cern-6440582023-03-14T17:06:22Zdoi:10.1016/S0920-5632(03)02632-Xhttp://cds.cern.ch/record/644058engKratochvila, Slavode Forcrand, PhilippeQCD at zero baryon densityParticle Physics - LatticeWhile the grand canonical partition function Z_{GC}(mu) with chemical potential mu explicitly breaks the Z_3 symmetry with the Dirac determinant, the canonical partition function at fixed baryon number Z_C(B) is manifestly Z_3-symmetric. We compare Z_{GC}(mu=0) and Z_C(B=0) formally and by numerical simulations, in particular with respect to properties of the deconfinement transition. Differences between the two ensembles, for physical observables characterising the phase transition, vanish with increasing lattice size. We show numerically that the free energy density is the same for both ensembles in the thermodynamic limit.While the grand canonical partition function Z_{GC}(mu) with chemical potential mu explicitly breaks the Z_3 symmetry with the Dirac determinant, the canonical partition function at fixed baryon number Z_C(B) is manifestly Z_3-symmetric. We compare Z_{GC}(mu=0) and Z_C(B=0) formally and by numerical simulations, in particular with respect to properties of the deconfinement transition. Differences between the two ensembles, for physical observables characterising the phase transition, vanish with increasing lattice size. We show numerically that the free energy density is the same for both ensembles in the thermodynamic limit.hep-lat/0309146CERN-TH-2003-222CERN-TH-2003-222CERN-TH-2003-311oai:cds.cern.ch:6440582003-09-22
spellingShingle Particle Physics - Lattice
Kratochvila, Slavo
de Forcrand, Philippe
QCD at zero baryon density
title QCD at zero baryon density
title_full QCD at zero baryon density
title_fullStr QCD at zero baryon density
title_full_unstemmed QCD at zero baryon density
title_short QCD at zero baryon density
title_sort qcd at zero baryon density
topic Particle Physics - Lattice
url https://dx.doi.org/10.1016/S0920-5632(03)02632-X
http://cds.cern.ch/record/644058
work_keys_str_mv AT kratochvilaslavo qcdatzerobaryondensity
AT deforcrandphilippe qcdatzerobaryondensity