Cargando…
On pseudo Cohen-Macaulay modules
Let $(A,\frak m)$ be a commutative Noetherian local ring with the maximal ideal $\frak m$ and $M$ be a finitely generated $A$- module with $\dim\,M=d$. For each system of parameters ${\underline x} {}=(x_1,...,x_d)$ of $M,$ we are interested the submodule $Q_M ({\underlinex})=\bigcup_{n>0}\Big((x...
Autores principales: | , , |
---|---|
Lenguaje: | eng |
Publicado: |
2002
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/645347 |
_version_ | 1780900837597380608 |
---|---|
author | Cuong, N T Hoa, N T Minh, N D |
author_facet | Cuong, N T Hoa, N T Minh, N D |
author_sort | Cuong, N T |
collection | CERN |
description | Let $(A,\frak m)$ be a commutative Noetherian local ring with the maximal ideal $\frak m$ and $M$ be a finitely generated $A$- module with $\dim\,M=d$. For each system of parameters ${\underline x} {}=(x_1,...,x_d)$ of $M,$ we are interested the submodule $Q_M ({\underlinex})=\bigcup_{n>0}\Big((x_1^{n+1},...,x_d^{n+1})M:x_1^n\cdots x_d^n\Big)If there exists a system of parameters ${\underline x}$ such that $e({\underline x};M)=\ell_A(M\big/Q_M({\underline x}))$ then $M$ is called {\smsl pseudo Cohen-Macaulay} (pCM for short). This paper presents some properties of pseudo Cohen-Macaulay modules in terms of local cohomology and system of parameters |
id | cern-645347 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2002 |
record_format | invenio |
spelling | cern-6453472019-09-30T06:29:59Zhttp://cds.cern.ch/record/645347engCuong, N THoa, N TMinh, N DOn pseudo Cohen-Macaulay modulesXXLet $(A,\frak m)$ be a commutative Noetherian local ring with the maximal ideal $\frak m$ and $M$ be a finitely generated $A$- module with $\dim\,M=d$. For each system of parameters ${\underline x} {}=(x_1,...,x_d)$ of $M,$ we are interested the submodule $Q_M ({\underlinex})=\bigcup_{n>0}\Big((x_1^{n+1},...,x_d^{n+1})M:x_1^n\cdots x_d^n\Big)If there exists a system of parameters ${\underline x}$ such that $e({\underline x};M)=\ell_A(M\big/Q_M({\underline x}))$ then $M$ is called {\smsl pseudo Cohen-Macaulay} (pCM for short). This paper presents some properties of pseudo Cohen-Macaulay modules in terms of local cohomology and system of parametersIC-2002-98oai:cds.cern.ch:6453472002 |
spellingShingle | XX Cuong, N T Hoa, N T Minh, N D On pseudo Cohen-Macaulay modules |
title | On pseudo Cohen-Macaulay modules |
title_full | On pseudo Cohen-Macaulay modules |
title_fullStr | On pseudo Cohen-Macaulay modules |
title_full_unstemmed | On pseudo Cohen-Macaulay modules |
title_short | On pseudo Cohen-Macaulay modules |
title_sort | on pseudo cohen-macaulay modules |
topic | XX |
url | http://cds.cern.ch/record/645347 |
work_keys_str_mv | AT cuongnt onpseudocohenmacaulaymodules AT hoant onpseudocohenmacaulaymodules AT minhnd onpseudocohenmacaulaymodules |