Cargando…

On pseudo Cohen-Macaulay modules

Let $(A,\frak m)$ be a commutative Noetherian local ring with the maximal ideal $\frak m$ and $M$ be a finitely generated $A$- module with $\dim\,M=d$. For each system of parameters ${\underline x} {}=(x_1,...,x_d)$ of $M,$ we are interested the submodule $Q_M ({\underlinex})=\bigcup_{n>0}\Big((x...

Descripción completa

Detalles Bibliográficos
Autores principales: Cuong, N T, Hoa, N T, Minh, N D
Lenguaje:eng
Publicado: 2002
Materias:
XX
Acceso en línea:http://cds.cern.ch/record/645347
_version_ 1780900837597380608
author Cuong, N T
Hoa, N T
Minh, N D
author_facet Cuong, N T
Hoa, N T
Minh, N D
author_sort Cuong, N T
collection CERN
description Let $(A,\frak m)$ be a commutative Noetherian local ring with the maximal ideal $\frak m$ and $M$ be a finitely generated $A$- module with $\dim\,M=d$. For each system of parameters ${\underline x} {}=(x_1,...,x_d)$ of $M,$ we are interested the submodule $Q_M ({\underlinex})=\bigcup_{n>0}\Big((x_1^{n+1},...,x_d^{n+1})M:x_1^n\cdots x_d^n\Big)If there exists a system of parameters ${\underline x}$ such that $e({\underline x};M)=\ell_A(M\big/Q_M({\underline x}))$ then $M$ is called {\smsl pseudo Cohen-Macaulay} (pCM for short). This paper presents some properties of pseudo Cohen-Macaulay modules in terms of local cohomology and system of parameters
id cern-645347
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2002
record_format invenio
spelling cern-6453472019-09-30T06:29:59Zhttp://cds.cern.ch/record/645347engCuong, N THoa, N TMinh, N DOn pseudo Cohen-Macaulay modulesXXLet $(A,\frak m)$ be a commutative Noetherian local ring with the maximal ideal $\frak m$ and $M$ be a finitely generated $A$- module with $\dim\,M=d$. For each system of parameters ${\underline x} {}=(x_1,...,x_d)$ of $M,$ we are interested the submodule $Q_M ({\underlinex})=\bigcup_{n>0}\Big((x_1^{n+1},...,x_d^{n+1})M:x_1^n\cdots x_d^n\Big)If there exists a system of parameters ${\underline x}$ such that $e({\underline x};M)=\ell_A(M\big/Q_M({\underline x}))$ then $M$ is called {\smsl pseudo Cohen-Macaulay} (pCM for short). This paper presents some properties of pseudo Cohen-Macaulay modules in terms of local cohomology and system of parametersIC-2002-98oai:cds.cern.ch:6453472002
spellingShingle XX
Cuong, N T
Hoa, N T
Minh, N D
On pseudo Cohen-Macaulay modules
title On pseudo Cohen-Macaulay modules
title_full On pseudo Cohen-Macaulay modules
title_fullStr On pseudo Cohen-Macaulay modules
title_full_unstemmed On pseudo Cohen-Macaulay modules
title_short On pseudo Cohen-Macaulay modules
title_sort on pseudo cohen-macaulay modules
topic XX
url http://cds.cern.ch/record/645347
work_keys_str_mv AT cuongnt onpseudocohenmacaulaymodules
AT hoant onpseudocohenmacaulaymodules
AT minhnd onpseudocohenmacaulaymodules