Cargando…
Towards a complete theory of thermal leptogenesis in the SM and MSSM
We perform a thorough study of thermal leptogenesis adding finite temperature effects, RGE corrections, scatterings involving gauge bosons and by properly avoiding overcounting on-shell processes. Assuming hierarchical right-handed neutrinos with arbitrary abundancy, successful leptogenesis can be a...
Autores principales: | , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2003
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1016/j.nuclphysb.2004.02.01 http://cds.cern.ch/record/676636 |
Sumario: | We perform a thorough study of thermal leptogenesis adding finite temperature effects, RGE corrections, scatterings involving gauge bosons and by properly avoiding overcounting on-shell processes. Assuming hierarchical right-handed neutrinos with arbitrary abundancy, successful leptogenesis can be achieved if left-handed neutrinos are lighter than 0.13 eV and right-handed neutrinos heavier than 0.2 10^8 GeV (SM case, 3sigma C.L.). MSSM results are similar. Furthermore, we study how reheating after inflation affects thermal leptogenesis. Assuming that the inflaton reheats SM particles but not directly right-handed neutrinos, we derive the lower bound on the reheating temperature to be T_RH > 2 10^9 GeV. This bound conflicts with the cosmological gravitino bound present in supersymmetric theories. We study some scenarios that avoid this conflict: `soft leptogenesis', leptogenesis in presence of a large right-handed (s)neutrino abundancy or of a sneutrino condensate. |
---|