Cargando…
Distributed constraint satisfaction for coordinating and integrating a large-scale, heterogenous enterprise
Market forces are continuously driving public and private organisations towards higher productivity, shorter process and production times, and fewer labour hours. To cope with these changes, organisations are adopting new organisational models of coordination and cooperation that increase their flex...
Autor principal: | |
---|---|
Lenguaje: | eng |
Publicado: |
CERN
2003
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/677286 |
Sumario: | Market forces are continuously driving public and private organisations towards higher productivity, shorter process and production times, and fewer labour hours. To cope with these changes, organisations are adopting new organisational models of coordination and cooperation that increase their flexibility, consistency, efficiency, productivity and profit margins. In this thesis an organisational model of coordination and cooperation is examined using a real life example; the technical integration of a distributed large-scale project of an international physics collaboration. The distributed resource constraint project scheduling problem is modelled and solved with the methods of distributed constraint satisfaction. A distributed local search method, the distributed breakout algorithm (DisBO), is used as the basis for the coordination scheme. The efficiency of the local search method is improved by extending it with an incremental problem solving scheme with variable ordering. The scheme is implemented as central algorithm, incremental breakout algorithm (IncBO), and as distributed algorithm, distributed incremental breakout algorithm (DisIncBO). In both cases, strong performance gains are observed for solving underconstrained problems. Distributed local search algorithms are incomplete and lack a termination guarantee. When problems contain hard or unsolvable subproblems and are tightly or overconstrained, local search falls into infinite cycles without explanation. A scheme is developed that identifies hard or unsolvable subproblems and orders these to size. This scheme is based on the constraint weight information generated by the breakout algorithm during search. This information, combined with the graph structure, is used to derive a fail first variable order. Empirical results show that the derived variable order is 'perfect'. When it guides simple backtracking, exceptionally hard problems do not occur, and, when problems are unsolvable, the fail depth is always the shortest. Two hybrid algorithms, BOBT and BOBT-SUSP are developed. When the problem is unsolvable, BOBT returns the minimal subproblem within the search scope and BOBT-SUSP returns the smallest unsolvable subproblem using a powerful weight sum constraint. A distributed hybrid algorithm (DisBOBT) is developed that combines DisBO with DisBT. The distributed hybrid algorithm first attempts to solve the problem with DisBO. If no solution is available after a bounded number of breakouts, DisBO is terminated, and DisBT solves the problem. DisBT is guided by a distributed variable order that is derived from the constraint weight information and the graph structure. The variable order is incrementally established, every time the partial solution needs to be extended, the next variable within the order is identified. Empirical results show strong performance gains, especially when problems are overconstrained and contain small unsolvable subproblems. |
---|