Cargando…
The $\eta^\prime g^* g^{(*)}$ Vertex Including the $\eta^\prime$-Meson Mass
The $\eta^\prime g^* g^{(*)}$ effective vertex function (EVF) is calculated in the QCD hard-scattering approach, taking into account the $\eta^\prime$-meson mass. We work in the approximation in which only one non-leading Gegenbauer moment in both the quark-antiquark and gluonic light-cone distribut...
Autores principales: | , |
---|---|
Lenguaje: | eng |
Publicado: |
2003
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1140/epjcd/s2003-03-509-2 http://cds.cern.ch/record/678160 |
Sumario: | The $\eta^\prime g^* g^{(*)}$ effective vertex function (EVF) is calculated in the QCD hard-scattering approach, taking into account the $\eta^\prime$-meson mass. We work in the approximation in which only one non-leading Gegenbauer moment in both the quark-antiquark and gluonic light-cone distribution amplitude for the $\eta^\prime$-meson is kept. The EVF with one off-shell gluon is shown to have the form $F_{\eta^\prime g^* g} (q_1^2, 0, m_{\eta^\prime}^2) = m_{\eta^\prime}^2 H(q_1^2)/(q_1^2 - m_{\eta^\prime}^2)$, valid for $|q_1^2| > m_{\eta^\prime}^2$. An interpolating formulae for the EVF in the space-like region of the virtuality $q_1^2$, which satisfies the QCD-anomaly normalization for on-shell gluons and the perturbative-QCD result for the gluon virtuality $|q_1^2| \gtrsim 2 GeV^2$, is also presented. |
---|