Cargando…

Search for SUSY in (Leptons +) Jets + $E_{T}^{miss}$ final states

We study the observability of the squarks and gluinos in CMS at LHC. Classical E_T^miss + jets final state as well as a number of additional multilepton signatures (0 leptons, 1 lepton, 2 leptons of the same sign, 2 leptons of the opposite sign and 3 leptons) are investigated . The detection of thes...

Descripción completa

Detalles Bibliográficos
Autores principales: Abdullin, S., Charles, F.
Lenguaje:eng
Publicado: 1998
Materias:
Acceso en línea:https://dx.doi.org/10.1016/S0550-3213(99)00117-0
http://cds.cern.ch/record/687029
Descripción
Sumario:We study the observability of the squarks and gluinos in CMS at LHC. Classical E_T^miss + jets final state as well as a number of additional multilepton signatures (0 leptons, 1 lepton, 2 leptons of the same sign, 2 leptons of the opposite sign and 3 leptons) are investigated . The detection of these sparticles relies on the observation of an excess of events over Standard Model background expectations. The study is made in the framework of a minimal SU(5) mSUGRA model as a function of m_0, m_1/2 for 4 sets of model parameters : tan(beta) = 2 or 35 and sign(mu) = +/- 1 and for fixed value of A_0 = 0. The CMS detector response is modelled using CMSJET 4.51 fast MC code (non-GEANT). The results obtained are presented as 5 sigma detection contours in the m_0, m_1/2 planes and with optimized selection cuts in various regions of the parameter space. The result of these investigations is that with integrated luminosity L=10^5 pb^-1 the squark and gluino mass reach is about 2.5 TeV and covers most of the interesting parts of parameter space according to neutralino relic density expectations. The influence of signal and background cross-section uncertainties on the reach contours is estimated. The effect of pile-up on signal and background is also discussed. This effect is found to be insignificant for E_T^miss and single lepton signatures, whilst only a minor deterioration is seen for multilepton final states.