Cargando…
Application of Neural Networks for Energy Reconstruction
The possibility to use Neural Networks for reconstruction ofthe energy deposited in the calorimetry system of the CMS detector is investigated. It is shown that using feed-forward neural network, good linearity, Gaussian energy distribution and good energy resolution can be achieved. Significant imp...
Autores principales: | Damgov, J., Litov, L. |
---|---|
Lenguaje: | eng |
Publicado: |
2000
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1016/S0168-9002(01)01851-4 http://cds.cern.ch/record/687287 |
Ejemplares similares
-
An application of cellular automata and neural networks for event reconstruction in discrete detectors
por: Kisel, I V, et al.
Publicado: (1992) -
Charged pion energy reconstruction in HGCAL TB prototype using graph neural networks
por: Alpana, Alpana
Publicado: (2023) -
$\pi^{-}$ energy reconstruction in HGCAL Beam Test prototype detector using Graph Neural Networks
por: CMS Collaboration
Publicado: (2022) -
Artificial Neural Networks for reconstruction of energy losses in dead materials between barrel LAr and Tile calorimeters: exploration and results
por: Budagov, Yu A, et al.
Publicado: (2008) -
Neural networks in experimental high energy physics
por: Bortolotto, C, et al.
Publicado: (1992)