Cargando…

TIME DOMAIN REFLECTOMETRY FOR THE LOCALIZATION OF ELECTRICAL FAULTS IN THE INSTRUMENTATION OF THE LHC STRING MAGNETS A Study Case of Voltage Tap, Temperature, and Pressure Transducer Circuits

Time Domain Reflectometry (TDR) is one of the most powerful methods used to analyze the integrity of the signal propagating in a transmission line. The method is based on the principle that the wave propagating in the line is reflected at the locations where the impedance of the line changes. The fa...

Descripción completa

Detalles Bibliográficos
Autor principal: Komorowski, P
Lenguaje:eng
Publicado: 1999
Materias:
Acceso en línea:http://cds.cern.ch/record/691791
Descripción
Sumario:Time Domain Reflectometry (TDR) is one of the most powerful methods used to analyze the integrity of the signal propagating in a transmission line. The method is based on the principle that the wave propagating in the line is reflected at the locations where the impedance of the line changes. The fault points, joints, branches, junctions, abrupt cross-section changes, etc., cause such reflections. The reflectometry technique involves the excitation of the circuit under test with either a fast edge step function or a well-defined impulse confined in time and frequency domains, and thereafter detection of the amplitude and time of the reflections. Both variants of the method were successfully applied to localize open circuit faults in the voltage tap connections, pressure transducers, and temperature sensing carbon gages circuits of the LHC String Dipole Magnet MB2 and Short Straight Section Quadrupole.