Cargando…
C - map, very special quaternionic geometry and dual Kahler spaces
We show that for all very special quaternionic manifolds a different N=1 reduction exists, defining a Kaehler Geometry which is ``dual'' to the original very special Kaehler geometry with metric G_{a\bar{b}}= - \partial_a \partial_b \ln V (V={1/6}d_{abc}\lambda^a \lambda^b \lambda^c). The...
Autores principales: | D'Auria, R., Ferrara, Sergio, Trigiante, M. |
---|---|
Lenguaje: | eng |
Publicado: |
2004
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1016/j.physletb.2004.03.009 http://cds.cern.ch/record/707362 |
Ejemplares similares
-
Gauging the Heisenberg algebra of special quaternionic manifolds
por: D'Auria, R, et al.
Publicado: (2004) -
Orientifolds, Brane Coordinates and Special Geometry
por: D'Auria, R, et al.
Publicado: (2004) -
Special geometry, cubic polynomials and homogeneous quaternionic spaces
por: de Wit, B., et al.
Publicado: (1992) -
Special Kähler geometry: an intrinsic formulation from N = 2 space-time supersymmetry
por: Castellani, L, et al.
Publicado: (1990) -
Scherk-Schwarz Reduction of D=5 Special and Quaternionic Geometry
por: Andrianopoli, Laura, et al.
Publicado: (2004)