Cargando…
Universality of Low-Energy Scattering in 2+1 Dimensions: The Non Symmetric Case
For a very large class of potentials, $V(\vec{x})$, $\vec{x}\in R^2$, we prove the universality of the low energy scattering amplitude, $f(\vec{k}', \vec{k})$. The result is $f=\sqrt{\frac{\pi}{2}}\{1/log k)+O(1/(log k)^2)$. The only exceptions occur if $V$ happens to have a zero energy bound s...
Autores principales: | , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2004
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1063/1.1843274 https://dx.doi.org/10.1063/1.2138050 http://cds.cern.ch/record/708574 |
Sumario: | For a very large class of potentials, $V(\vec{x})$, $\vec{x}\in R^2$, we prove the universality of the low energy scattering amplitude, $f(\vec{k}', \vec{k})$. The result is $f=\sqrt{\frac{\pi}{2}}\{1/log k)+O(1/(log k)^2)$. The only exceptions occur if $V$ happens to have a zero energy bound state. Our new result includes as a special subclass the case of rotationally symmetric potentials, $V(|\vec{x}|)$. |
---|