Cargando…

Universality of Low-Energy Scattering in 2+1 Dimensions: The Non Symmetric Case

For a very large class of potentials, $V(\vec{x})$, $\vec{x}\in R^2$, we prove the universality of the low energy scattering amplitude, $f(\vec{k}', \vec{k})$. The result is $f=\sqrt{\frac{\pi}{2}}\{1/log k)+O(1/(log k)^2)$. The only exceptions occur if $V$ happens to have a zero energy bound s...

Descripción completa

Detalles Bibliográficos
Autores principales: Khuri, N.N., Martin, Andre, Sabatier, Pierre C., Wu, Tai Tsun
Lenguaje:eng
Publicado: 2004
Materias:
Acceso en línea:https://dx.doi.org/10.1063/1.1843274
https://dx.doi.org/10.1063/1.2138050
http://cds.cern.ch/record/708574
Descripción
Sumario:For a very large class of potentials, $V(\vec{x})$, $\vec{x}\in R^2$, we prove the universality of the low energy scattering amplitude, $f(\vec{k}', \vec{k})$. The result is $f=\sqrt{\frac{\pi}{2}}\{1/log k)+O(1/(log k)^2)$. The only exceptions occur if $V$ happens to have a zero energy bound state. Our new result includes as a special subclass the case of rotationally symmetric potentials, $V(|\vec{x}|)$.