Cargando…

Universality of Low-Energy Scattering in 2+1 Dimensions: The Non Symmetric Case

For a very large class of potentials, $V(\vec{x})$, $\vec{x}\in R^2$, we prove the universality of the low energy scattering amplitude, $f(\vec{k}', \vec{k})$. The result is $f=\sqrt{\frac{\pi}{2}}\{1/log k)+O(1/(log k)^2)$. The only exceptions occur if $V$ happens to have a zero energy bound s...

Descripción completa

Detalles Bibliográficos
Autores principales: Khuri, N.N., Martin, Andre, Sabatier, Pierre C., Wu, Tai Tsun
Lenguaje:eng
Publicado: 2004
Materias:
Acceso en línea:https://dx.doi.org/10.1063/1.1843274
https://dx.doi.org/10.1063/1.2138050
http://cds.cern.ch/record/708574
_version_ 1780902499418374144
author Khuri, N.N.
Martin, Andre
Sabatier, Pierre C.
Wu, Tai Tsun
author_facet Khuri, N.N.
Martin, Andre
Sabatier, Pierre C.
Wu, Tai Tsun
author_sort Khuri, N.N.
collection CERN
description For a very large class of potentials, $V(\vec{x})$, $\vec{x}\in R^2$, we prove the universality of the low energy scattering amplitude, $f(\vec{k}', \vec{k})$. The result is $f=\sqrt{\frac{\pi}{2}}\{1/log k)+O(1/(log k)^2)$. The only exceptions occur if $V$ happens to have a zero energy bound state. Our new result includes as a special subclass the case of rotationally symmetric potentials, $V(|\vec{x}|)$.
id cern-708574
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2004
record_format invenio
spelling cern-7085742023-03-14T18:18:24Zdoi:10.1063/1.1843274doi:10.1063/1.2138050http://cds.cern.ch/record/708574engKhuri, N.N.Martin, AndreSabatier, Pierre C.Wu, Tai TsunUniversality of Low-Energy Scattering in 2+1 Dimensions: The Non Symmetric CaseParticle Physics - TheoryFor a very large class of potentials, $V(\vec{x})$, $\vec{x}\in R^2$, we prove the universality of the low energy scattering amplitude, $f(\vec{k}', \vec{k})$. The result is $f=\sqrt{\frac{\pi}{2}}\{1/log k)+O(1/(log k)^2)$. The only exceptions occur if $V$ happens to have a zero energy bound state. Our new result includes as a special subclass the case of rotationally symmetric potentials, $V(|\vec{x}|)$.For a very large class of potentials, $V(\vec{x})$, $\vec{x}\in R^2$, we prove the universality of the low energy scattering amplitude, $f(\vec{k}', \vec{k})$. The result is $f=\sqrt{\frac{\pi}{2}}\{1/log k)+O(1/(log k)^2)$. The only exceptions occur if $V$ happens to have a zero energy bound state. Our new result includes as a special subclass the case of rotationally symmetric potentials, $V(|\vec{x}|)$.hep-th/0401222oai:cds.cern.ch:7085742004-01-28
spellingShingle Particle Physics - Theory
Khuri, N.N.
Martin, Andre
Sabatier, Pierre C.
Wu, Tai Tsun
Universality of Low-Energy Scattering in 2+1 Dimensions: The Non Symmetric Case
title Universality of Low-Energy Scattering in 2+1 Dimensions: The Non Symmetric Case
title_full Universality of Low-Energy Scattering in 2+1 Dimensions: The Non Symmetric Case
title_fullStr Universality of Low-Energy Scattering in 2+1 Dimensions: The Non Symmetric Case
title_full_unstemmed Universality of Low-Energy Scattering in 2+1 Dimensions: The Non Symmetric Case
title_short Universality of Low-Energy Scattering in 2+1 Dimensions: The Non Symmetric Case
title_sort universality of low-energy scattering in 2+1 dimensions: the non symmetric case
topic Particle Physics - Theory
url https://dx.doi.org/10.1063/1.1843274
https://dx.doi.org/10.1063/1.2138050
http://cds.cern.ch/record/708574
work_keys_str_mv AT khurinn universalityoflowenergyscatteringin21dimensionsthenonsymmetriccase
AT martinandre universalityoflowenergyscatteringin21dimensionsthenonsymmetriccase
AT sabatierpierrec universalityoflowenergyscatteringin21dimensionsthenonsymmetriccase
AT wutaitsun universalityoflowenergyscatteringin21dimensionsthenonsymmetriccase