Cargando…
Universality of Low-Energy Scattering in 2+1 Dimensions: The Non Symmetric Case
For a very large class of potentials, $V(\vec{x})$, $\vec{x}\in R^2$, we prove the universality of the low energy scattering amplitude, $f(\vec{k}', \vec{k})$. The result is $f=\sqrt{\frac{\pi}{2}}\{1/log k)+O(1/(log k)^2)$. The only exceptions occur if $V$ happens to have a zero energy bound s...
Autores principales: | , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2004
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1063/1.1843274 https://dx.doi.org/10.1063/1.2138050 http://cds.cern.ch/record/708574 |
_version_ | 1780902499418374144 |
---|---|
author | Khuri, N.N. Martin, Andre Sabatier, Pierre C. Wu, Tai Tsun |
author_facet | Khuri, N.N. Martin, Andre Sabatier, Pierre C. Wu, Tai Tsun |
author_sort | Khuri, N.N. |
collection | CERN |
description | For a very large class of potentials, $V(\vec{x})$, $\vec{x}\in R^2$, we prove the universality of the low energy scattering amplitude, $f(\vec{k}', \vec{k})$. The result is $f=\sqrt{\frac{\pi}{2}}\{1/log k)+O(1/(log k)^2)$. The only exceptions occur if $V$ happens to have a zero energy bound state. Our new result includes as a special subclass the case of rotationally symmetric potentials, $V(|\vec{x}|)$. |
id | cern-708574 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2004 |
record_format | invenio |
spelling | cern-7085742023-03-14T18:18:24Zdoi:10.1063/1.1843274doi:10.1063/1.2138050http://cds.cern.ch/record/708574engKhuri, N.N.Martin, AndreSabatier, Pierre C.Wu, Tai TsunUniversality of Low-Energy Scattering in 2+1 Dimensions: The Non Symmetric CaseParticle Physics - TheoryFor a very large class of potentials, $V(\vec{x})$, $\vec{x}\in R^2$, we prove the universality of the low energy scattering amplitude, $f(\vec{k}', \vec{k})$. The result is $f=\sqrt{\frac{\pi}{2}}\{1/log k)+O(1/(log k)^2)$. The only exceptions occur if $V$ happens to have a zero energy bound state. Our new result includes as a special subclass the case of rotationally symmetric potentials, $V(|\vec{x}|)$.For a very large class of potentials, $V(\vec{x})$, $\vec{x}\in R^2$, we prove the universality of the low energy scattering amplitude, $f(\vec{k}', \vec{k})$. The result is $f=\sqrt{\frac{\pi}{2}}\{1/log k)+O(1/(log k)^2)$. The only exceptions occur if $V$ happens to have a zero energy bound state. Our new result includes as a special subclass the case of rotationally symmetric potentials, $V(|\vec{x}|)$.hep-th/0401222oai:cds.cern.ch:7085742004-01-28 |
spellingShingle | Particle Physics - Theory Khuri, N.N. Martin, Andre Sabatier, Pierre C. Wu, Tai Tsun Universality of Low-Energy Scattering in 2+1 Dimensions: The Non Symmetric Case |
title | Universality of Low-Energy Scattering in 2+1 Dimensions: The Non Symmetric Case |
title_full | Universality of Low-Energy Scattering in 2+1 Dimensions: The Non Symmetric Case |
title_fullStr | Universality of Low-Energy Scattering in 2+1 Dimensions: The Non Symmetric Case |
title_full_unstemmed | Universality of Low-Energy Scattering in 2+1 Dimensions: The Non Symmetric Case |
title_short | Universality of Low-Energy Scattering in 2+1 Dimensions: The Non Symmetric Case |
title_sort | universality of low-energy scattering in 2+1 dimensions: the non symmetric case |
topic | Particle Physics - Theory |
url | https://dx.doi.org/10.1063/1.1843274 https://dx.doi.org/10.1063/1.2138050 http://cds.cern.ch/record/708574 |
work_keys_str_mv | AT khurinn universalityoflowenergyscatteringin21dimensionsthenonsymmetriccase AT martinandre universalityoflowenergyscatteringin21dimensionsthenonsymmetriccase AT sabatierpierrec universalityoflowenergyscatteringin21dimensionsthenonsymmetriccase AT wutaitsun universalityoflowenergyscatteringin21dimensionsthenonsymmetriccase |