Cargando…
Universality of Low-Energy Scattering in 2+1 Dimensions: The Non Symmetric Case
For a very large class of potentials, $V(\vec{x})$, $\vec{x}\in R^2$, we prove the universality of the low energy scattering amplitude, $f(\vec{k}', \vec{k})$. The result is $f=\sqrt{\frac{\pi}{2}}\{1/log k)+O(1/(log k)^2)$. The only exceptions occur if $V$ happens to have a zero energy bound s...
Autores principales: | Khuri, N.N., Martin, Andre, Sabatier, Pierre C., Wu, Tai Tsun |
---|---|
Lenguaje: | eng |
Publicado: |
2004
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1063/1.1843274 https://dx.doi.org/10.1063/1.2138050 http://cds.cern.ch/record/708574 |
Ejemplares similares
-
Universality of low-energy scattering in (2+1) dimensions
por: Chadan, K, et al.
Publicado: (1998) -
Low-energy potential scattering in two and three dimensions
por: Khuri, N.N., et al.
Publicado: (2008) -
Bound States in n Dimensions (Especially n = 1 and n = 2)
por: Khuri, N.N., et al.
Publicado: (2001) -
Why the Real Part of the Proton-Proton Forward Scattering Amplitude Should be Measured at the LHC
por: Bourrely, C., et al.
Publicado: (2005) -
Low-energy scattering of black holes and p-branes in string theory
por: Khuri, Ramzi R., et al.
Publicado: (1995)