Cargando…
PhysicsGP: A Genetic Programming Approach to Event Selection
We present a novel multivariate classification technique based on Genetic Programming. The technique is distinct from Genetic Algorithms and offers several advantages compared to Neural Networks and Support Vector Machines. The technique optimizes a set of human-readable classifiers with respect to...
Autores principales: | Cranmer, Kyle, Bowman, R. Sean |
---|---|
Lenguaje: | eng |
Publicado: |
2004
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1016/j.cpc.2004.12.006 http://cds.cern.ch/record/711048 |
Ejemplares similares
-
Statistical Challenges for Searches for New Physics at the LHC
por: Cranmer, Kyle
Publicado: (2005) -
Practical Statistics for the LHC
por: Cranmer, Kyle
Publicado: (2015) -
Physical (a)causality: determinism, randomness and uncaused events
por: Svozil, Karl
Publicado: (2018) -
Waynflete lectures on physics: selected topics in contemporary physics and astrophysics
por: Ginzburg, Vitalii Lazarevich
Publicado: (1983) -
Control systems functions and programming approaches
por: Chorafas, Dimitris N
Publicado: (1966)