Cargando…

Constraining SUSY Dark Matter with the ATLAS Detector at the LHC

In the event that R-Parity conserving supersymmetry (SUSY) is discovered at the LHC, a key issue which will need to be addressed will be the consistency of that signal with astrophysical and non-accelerator constraints on SUSY Dark Matter. This issue is studied for the SPS1a mSUGRA benchmark model b...

Descripción completa

Detalles Bibliográficos
Autores principales: Polesello, G, Tovey, Daniel R
Lenguaje:eng
Publicado: 2004
Materias:
Acceso en línea:https://dx.doi.org/10.1088/1126-6708/2004/05/071
http://cds.cern.ch/record/712362
Descripción
Sumario:In the event that R-Parity conserving supersymmetry (SUSY) is discovered at the LHC, a key issue which will need to be addressed will be the consistency of that signal with astrophysical and non-accelerator constraints on SUSY Dark Matter. This issue is studied for the SPS1a mSUGRA benchmark model by using measurements of end-points and thresholds in the invariant mass spectra of various combinations of leptons and jets in ATLAS to constrain the model parameters. These constraints are then used to assess the statistical accuracy with which quantities such as the Dark Matter relic density and direct detection cross-section can be measured. Systematic effects arising from the use of different mSUGRA RGE codes are also estimated. Results indicate that for SPS1a a statistical(systematic) precision on the relic abundance $\sim$ 2.8 \% (3 \%) can be obtained given 300 fb$^{-1}$ of data.