Cargando…
Fractal supersymmetric QM, Geometric Probability and the Riemann Hypothesis
The Riemann's hypothesis (RH) states that the nontrivial zeros of the Riemann zeta-function are of the form $ s_n =1/2+i\lambda_n $. Earlier work on the RH based on supersymmetric QM, whose potential was related to the Gauss-Jacobi theta series, allows to provide the proper framework to constru...
Autores principales: | Castro, C, Mahecha, J |
---|---|
Lenguaje: | eng |
Publicado: |
2004
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/736916 |
Ejemplares similares
-
Equivalents of the Riemann hypothesis
por: Broughan, Kevin
Publicado: (2017) -
Electrical Equivalent of Riemann Hypothesis
por: Nambiar, K K
Publicado: (2003) -
Information-Theoretic Equivalent of Riemann Hypothesis
por: Nambiar, K K
Publicado: (2003) -
Generalized Minkowski content, spectrum of fractal drums, fractal strings and the Riemann zeta-functions
por: He, Christina Q, et al.
Publicado: (1997) -
In search of the Riemann zeros: strings, fractal membranes and noncommutative spacetimes
por: Lapidus, Michel L
Publicado: (2008)