Cargando…
Root systems from Toric Calabi-Yau Geometry. Towards new algebraic structures and symmetries in physics?
The algebraic approach to the construction of the reflexive polyhedra that yield Calabi-Yau spaces in three or more complex dimensions with K3 fibres reveals graphs that include and generalize the Dynkin diagrams associated with gauge symmetries. In this work we continue to study the structure of gr...
Autores principales: | Torrente-Lujan, E, Volkov, G G |
---|---|
Lenguaje: | eng |
Publicado: |
2004
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/739384 |
Ejemplares similares
-
Universal Calabi-Yau Algebra: Towards an Unification of Complex Geometry
por: Volkov, G
Publicado: (2002) -
Universal Calabi-Yau Algebra: Towards an Unification of Complex Geometry
por: Anselmo, F., et al.
Publicado: (2002) -
From Galois theory towards Berger-Calabi-yau geometry and new symmetries
por: Aglietti, U
Publicado: (2004) -
Results from an Algebraic Classification of Calabi-Yau Manifolds
por: Anselmo, F., et al.
Publicado: (2000) -
Universal Calabi-Yau Algebra: Classification and Enumeration of Fibrations
por: Anselmo, F., et al.
Publicado: (2002)