Cargando…
The scalar curvature problem on the four dimensional half sphere
In this paper, we consider the problem of prescribing the scalar curvature under minimal boundary conditions on the standard four dimensional half sphere. We provide an Euler-Hopf type criterion for a given function to be a scalar curvature for some metric conformal to the standard one. Our proof in...
Autores principales: | Ben-Ayed, M, Ahmedou, M O, El-Mehdi, K |
---|---|
Lenguaje: | eng |
Publicado: |
2003
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/747018 |
Ejemplares similares
-
The Paneitz curvature problem on lower dimensional spheres
por: Ben-Ayed, M, et al.
Publicado: (2003) -
Existence of conformal metrics on spheres with prescribed Paneitz curvature
por: Ben-Ayed, M, et al.
Publicado: (2003) -
Prescribed scalar curvature with minimal boundary mean curvature on S sub + sup 4
por: Chitoui, H, et al.
Publicado: (2003) -
Effective Lagrangians and properties of scalar background fields in four-dimensional superstrings
por: Ferrara, Sergio
Publicado: (1988) -
On the Kepler-Coulomb problem in the three-dimensional space with constant positive curvature
por: Pogosyan, G S, et al.
Publicado: (1996)