Cargando…
On K sub 2 of division algebras
In this paper, it is proved that if F is a global field or a local field, then every element of K sub 2 D is generated by symbols of form left brace a, b right brace with an element of F*, b is an element of D*, where D is a central division algebra over F. The tame kernel and wild kernel of central...
Autores principales: | Guo Xue Jun, Kuku, A, Qin Hou Rong |
---|---|
Lenguaje: | eng |
Publicado: |
2003
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/747031 |
Ejemplares similares
-
Wild kernels for higher K-theory of division and semi-simple algebras
por: Quo Xue Jun, et al.
Publicado: (2003) -
K-theory and periodic cyclic homology of some noncompact quantum algebras
por: Do Ngoc Diep, et al.
Publicado: (2003) -
Supersymmetry and the division algebras
por: Kugo, T, et al.
Publicado: (1983) -
Harmonic superspaces and the division algebras
por: Semikhatov, A M
Publicado: (1985) -
A division algebra classification of generalized supersymmetries
por: Toppan, F
Publicado: (2004)