Cargando…
Division algebras and extended N = 2, 4, 8 super KdVs
The first example of an N = 8 supersymmetric extension of the KdV equation is here explicitly constructed. It involves 8 bosonic and 8 fermionic fields. It corresponds to the unique N = 8 solution based a generalized hamiltonian dynamics with (generalized) Poisson brackets given by the Non-associate...
Autores principales: | , , |
---|---|
Lenguaje: | eng |
Publicado: |
2003
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/747887 |
Sumario: | The first example of an N = 8 supersymmetric extension of the KdV equation is here explicitly constructed. It involves 8 bosonic and 8 fermionic fields. It corresponds to the unique N = 8 solution based a generalized hamiltonian dynamics with (generalized) Poisson brackets given by the Non-associate N = 8 Superconformal Algebra. The complete list of inequivalent classes of parametric-dependent N = 3 and N = 4 superKdVs obtained from the 'Non-associative N= 8 SCA' is also furnished. Furthermore, a fundamental domain characterizing the class of inequivalent N = 4 superKdVs based on the 'minimal N = 4 SCA' is given. |
---|