Cargando…
On Bayesian treatment of systematic uncertainties in confidence interval calculation
In high energy physics, a widely used method to treat systematic uncertainties in confidence interval calculations is based on combining a frequentist construction of confidence belts with a Bayesian treatment of systematic uncertainties. In this note we present a study of the coverage of this metho...
Autores principales: | , |
---|---|
Lenguaje: | eng |
Publicado: |
2004
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1016/j.nima.2004.09.037 http://cds.cern.ch/record/787940 |
Sumario: | In high energy physics, a widely used method to treat systematic uncertainties in confidence interval calculations is based on combining a frequentist construction of confidence belts with a Bayesian treatment of systematic uncertainties. In this note we present a study of the coverage of this method for the standard Likelihood Ratio (aka Feldman & Cousins) construction for a Poisson process with known background and Gaussian or log-Normal distributed uncertainties in the background or signal efficiency. For uncertainties in the signal efficiency of upto 40 % we find over-coverage on the level of 2 to 4 % depending on the size of uncertainties and the region in signal space. Uncertainties in the background generally have smaller effect on the coverage. A considerable smoothing of the coverage curves is observed. A software package is presented which allows fast calculation of the confidence intervals for a variety of assumptions on shape and size of systematic uncertainties for different nuisance parameters. The calculation speed allows experimenters to test the coverage for their specific conditions. |
---|