Cargando…

Matrix Factorizations and Mirror Symmetry: The Cubic Curve

We revisit open string mirror symmetry for the elliptic curve, using matrix factorizations for describing D-branes on the B-model side. We show how flat coordinates can be intrinsically defined in the Landau-Ginzburg model, and derive the A-model partition function counting disk instantons that stre...

Descripción completa

Detalles Bibliográficos
Autores principales: Brunner, Ilka, Herbst, Manfred, Lerche, Wolfgang, Walcher, Johannes
Lenguaje:eng
Publicado: 2004
Materias:
Acceso en línea:https://dx.doi.org/10.1088/1126-6708/2006/11/006
http://cds.cern.ch/record/790805
Descripción
Sumario:We revisit open string mirror symmetry for the elliptic curve, using matrix factorizations for describing D-branes on the B-model side. We show how flat coordinates can be intrinsically defined in the Landau-Ginzburg model, and derive the A-model partition function counting disk instantons that stretch between three D-branes. In mathematical terms, this amounts to computing the simplest Fukaya product m_2 from the LG mirror theory. In physics terms, this gives a systematic method for determining non-perturbative Yukawa couplings for intersecting brane configurations.