Cargando…

Matrix Factorizations and Mirror Symmetry: The Cubic Curve

We revisit open string mirror symmetry for the elliptic curve, using matrix factorizations for describing D-branes on the B-model side. We show how flat coordinates can be intrinsically defined in the Landau-Ginzburg model, and derive the A-model partition function counting disk instantons that stre...

Descripción completa

Detalles Bibliográficos
Autores principales: Brunner, Ilka, Herbst, Manfred, Lerche, Wolfgang, Walcher, Johannes
Lenguaje:eng
Publicado: 2004
Materias:
Acceso en línea:https://dx.doi.org/10.1088/1126-6708/2006/11/006
http://cds.cern.ch/record/790805
_version_ 1780904533167177728
author Brunner, Ilka
Herbst, Manfred
Lerche, Wolfgang
Walcher, Johannes
author_facet Brunner, Ilka
Herbst, Manfred
Lerche, Wolfgang
Walcher, Johannes
author_sort Brunner, Ilka
collection CERN
description We revisit open string mirror symmetry for the elliptic curve, using matrix factorizations for describing D-branes on the B-model side. We show how flat coordinates can be intrinsically defined in the Landau-Ginzburg model, and derive the A-model partition function counting disk instantons that stretch between three D-branes. In mathematical terms, this amounts to computing the simplest Fukaya product m_2 from the LG mirror theory. In physics terms, this gives a systematic method for determining non-perturbative Yukawa couplings for intersecting brane configurations.
id cern-790805
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2004
record_format invenio
spelling cern-7908052023-03-14T19:13:47Zdoi:10.1088/1126-6708/2006/11/006http://cds.cern.ch/record/790805engBrunner, IlkaHerbst, ManfredLerche, WolfgangWalcher, JohannesMatrix Factorizations and Mirror Symmetry: The Cubic CurveParticle Physics - TheoryWe revisit open string mirror symmetry for the elliptic curve, using matrix factorizations for describing D-branes on the B-model side. We show how flat coordinates can be intrinsically defined in the Landau-Ginzburg model, and derive the A-model partition function counting disk instantons that stretch between three D-branes. In mathematical terms, this amounts to computing the simplest Fukaya product m_2 from the LG mirror theory. In physics terms, this gives a systematic method for determining non-perturbative Yukawa couplings for intersecting brane configurations.We revisit open string mirror symmetry for the elliptic curve, using matrix factorizations for describing D-branes on the B-model side. We show how flat coordinates can be intrinsically defined in the Landau-Ginzburg model, and derive the A-model partition function counting disk instantons that stretch between three D-branes. In mathematical terms, this amounts to computing the simplest Fukaya product m_2 from the LG mirror theory. In physics terms, this gives a systematic method for determining non-perturbative Yukawa couplings for intersecting brane configurations.hep-th/0408243CERN-PH-TH-2004-162KCL-MTH-04-12NSF-KITP-04-106CERN-PH-TH-2004-162KCL-MTH-2004-12NSF-KITP-2004-106oai:cds.cern.ch:7908052004
spellingShingle Particle Physics - Theory
Brunner, Ilka
Herbst, Manfred
Lerche, Wolfgang
Walcher, Johannes
Matrix Factorizations and Mirror Symmetry: The Cubic Curve
title Matrix Factorizations and Mirror Symmetry: The Cubic Curve
title_full Matrix Factorizations and Mirror Symmetry: The Cubic Curve
title_fullStr Matrix Factorizations and Mirror Symmetry: The Cubic Curve
title_full_unstemmed Matrix Factorizations and Mirror Symmetry: The Cubic Curve
title_short Matrix Factorizations and Mirror Symmetry: The Cubic Curve
title_sort matrix factorizations and mirror symmetry: the cubic curve
topic Particle Physics - Theory
url https://dx.doi.org/10.1088/1126-6708/2006/11/006
http://cds.cern.ch/record/790805
work_keys_str_mv AT brunnerilka matrixfactorizationsandmirrorsymmetrythecubiccurve
AT herbstmanfred matrixfactorizationsandmirrorsymmetrythecubiccurve
AT lerchewolfgang matrixfactorizationsandmirrorsymmetrythecubiccurve
AT walcherjohannes matrixfactorizationsandmirrorsymmetrythecubiccurve