Cargando…
Matrix Factorizations and Mirror Symmetry: The Cubic Curve
We revisit open string mirror symmetry for the elliptic curve, using matrix factorizations for describing D-branes on the B-model side. We show how flat coordinates can be intrinsically defined in the Landau-Ginzburg model, and derive the A-model partition function counting disk instantons that stre...
Autores principales: | , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2004
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1088/1126-6708/2006/11/006 http://cds.cern.ch/record/790805 |
_version_ | 1780904533167177728 |
---|---|
author | Brunner, Ilka Herbst, Manfred Lerche, Wolfgang Walcher, Johannes |
author_facet | Brunner, Ilka Herbst, Manfred Lerche, Wolfgang Walcher, Johannes |
author_sort | Brunner, Ilka |
collection | CERN |
description | We revisit open string mirror symmetry for the elliptic curve, using matrix factorizations for describing D-branes on the B-model side. We show how flat coordinates can be intrinsically defined in the Landau-Ginzburg model, and derive the A-model partition function counting disk instantons that stretch between three D-branes. In mathematical terms, this amounts to computing the simplest Fukaya product m_2 from the LG mirror theory. In physics terms, this gives a systematic method for determining non-perturbative Yukawa couplings for intersecting brane configurations. |
id | cern-790805 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2004 |
record_format | invenio |
spelling | cern-7908052023-03-14T19:13:47Zdoi:10.1088/1126-6708/2006/11/006http://cds.cern.ch/record/790805engBrunner, IlkaHerbst, ManfredLerche, WolfgangWalcher, JohannesMatrix Factorizations and Mirror Symmetry: The Cubic CurveParticle Physics - TheoryWe revisit open string mirror symmetry for the elliptic curve, using matrix factorizations for describing D-branes on the B-model side. We show how flat coordinates can be intrinsically defined in the Landau-Ginzburg model, and derive the A-model partition function counting disk instantons that stretch between three D-branes. In mathematical terms, this amounts to computing the simplest Fukaya product m_2 from the LG mirror theory. In physics terms, this gives a systematic method for determining non-perturbative Yukawa couplings for intersecting brane configurations.We revisit open string mirror symmetry for the elliptic curve, using matrix factorizations for describing D-branes on the B-model side. We show how flat coordinates can be intrinsically defined in the Landau-Ginzburg model, and derive the A-model partition function counting disk instantons that stretch between three D-branes. In mathematical terms, this amounts to computing the simplest Fukaya product m_2 from the LG mirror theory. In physics terms, this gives a systematic method for determining non-perturbative Yukawa couplings for intersecting brane configurations.hep-th/0408243CERN-PH-TH-2004-162KCL-MTH-04-12NSF-KITP-04-106CERN-PH-TH-2004-162KCL-MTH-2004-12NSF-KITP-2004-106oai:cds.cern.ch:7908052004 |
spellingShingle | Particle Physics - Theory Brunner, Ilka Herbst, Manfred Lerche, Wolfgang Walcher, Johannes Matrix Factorizations and Mirror Symmetry: The Cubic Curve |
title | Matrix Factorizations and Mirror Symmetry: The Cubic Curve |
title_full | Matrix Factorizations and Mirror Symmetry: The Cubic Curve |
title_fullStr | Matrix Factorizations and Mirror Symmetry: The Cubic Curve |
title_full_unstemmed | Matrix Factorizations and Mirror Symmetry: The Cubic Curve |
title_short | Matrix Factorizations and Mirror Symmetry: The Cubic Curve |
title_sort | matrix factorizations and mirror symmetry: the cubic curve |
topic | Particle Physics - Theory |
url | https://dx.doi.org/10.1088/1126-6708/2006/11/006 http://cds.cern.ch/record/790805 |
work_keys_str_mv | AT brunnerilka matrixfactorizationsandmirrorsymmetrythecubiccurve AT herbstmanfred matrixfactorizationsandmirrorsymmetrythecubiccurve AT lerchewolfgang matrixfactorizationsandmirrorsymmetrythecubiccurve AT walcherjohannes matrixfactorizationsandmirrorsymmetrythecubiccurve |