Cargando…
Matrix Factorizations and Mirror Symmetry: The Cubic Curve
We revisit open string mirror symmetry for the elliptic curve, using matrix factorizations for describing D-branes on the B-model side. We show how flat coordinates can be intrinsically defined in the Landau-Ginzburg model, and derive the A-model partition function counting disk instantons that stre...
Autores principales: | Brunner, Ilka, Herbst, Manfred, Lerche, Wolfgang, Walcher, Johannes |
---|---|
Lenguaje: | eng |
Publicado: |
2004
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1088/1126-6708/2006/11/006 http://cds.cern.ch/record/790805 |
Ejemplares similares
-
On Matrix Factorizations, Residue Pairings and Homological Mirror Symmetry
por: Lerche, Wolfgang
Publicado: (2018) -
Orientifolds and Mirror Symmetry
por: Brunner, Ilka, et al.
Publicado: (2003) -
Calculations for Mirror Symmetry with D-branes
por: Walcher, Johannes
Publicado: (2009) -
Landau-Ginzburg Models in Real Mirror Symmetry
por: Walcher, Johannes
Publicado: (2010) -
Real Mirror Symmetry for One-parameter Hypersurfaces
por: Krefl, Daniel, et al.
Publicado: (2008)