Cargando…
The scaling dimension of low lying Dirac eigenmodes and of the topological charge density
As a quantitative measure of localization, the inverse participation ratio of low lying Dirac eigenmodes and topological charge density is calculated on quenched lattices over a wide range of lattice spacings and volumes. Since different topological objects (instantons, vortices, monopoles, and arti...
Autores principales: | , , , , , , , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2004
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1016/j.nuclphysbps.2004.11.312 http://cds.cern.ch/record/798993 |
Sumario: | As a quantitative measure of localization, the inverse participation ratio of low lying Dirac eigenmodes and topological charge density is calculated on quenched lattices over a wide range of lattice spacings and volumes. Since different topological objects (instantons, vortices, monopoles, and artifacts) have different co-dimension, scaling analysis provides information on the amount of each present and their correlation with the localization of low lying eigenmodes. |
---|