Cargando…
On the conversion coefficients for cosmic ray dosimetry
Calculations of fluence-to-effective dose conversion coefficients have typically been limited to the standard irradiation geometries of the human body: anterior-to-posterior (AP), posterior-to-anterior (PA), lateral from the right side to the left side (RLAT), lateral from the left side to the right...
Autores principales: | , |
---|---|
Lenguaje: | eng |
Publicado: |
2003
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/802334 |
Sumario: | Calculations of fluence-to-effective dose conversion coefficients have typically been limited to the standard irradiation geometries of the human body: anterior-to-posterior (AP), posterior-to-anterior (PA), lateral from the right side to the left side (RLAT), lateral from the left side to the right side (LLAT), rotational around the vertical axis (ROT), and isotropic incidence from all directions (ISO). In order to estimate the doses to air crew members exposed to cosmic radiation, the geometrical conditions of irradiation are usually assumed to be isotropic. However, the assumption of isotropic irradiation is in many cases invalid for the high energy component of the radiation field, which is often peaked in the forward direction. Therefore, it was considered useful to extend the calculations of conversion coefficients to other geometries. New sets of conversion coefficients fluence-to-effective dose are presented for the semiisotropic irradiation of the human body and for the irradiation from the top. Their application to cosmic ray dosimetry is discussed. (40 refs). |
---|