Cargando…
LHC interaction region quadrupole cryostat production, alignment, and performance summary
The cryostat of a Large Hadron Collider (LHC) Interaction Region (IR) quadrupole magnet consists of all components of the inner triplet except the magnet assembly itself. It serves to support the magnet accurately and reliably within the vacuum vessel, to provide all required cryogenic piping, and t...
Autores principales: | , , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2004
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1109/TASC.2004.829062 http://cds.cern.ch/record/803857 |
Sumario: | The cryostat of a Large Hadron Collider (LHC) Interaction Region (IR) quadrupole magnet consists of all components of the inner triplet except the magnet assembly itself. It serves to support the magnet accurately and reliably within the vacuum vessel, to provide all required cryogenic piping, and to insulate the cold mass from heat radiated and conducted from the environment. The major components of the cryostat are the vacuum vessel, thermal shield, multi-layer insulation system, cryogenic piping, interconnections, and suspension system. While responsibility for the design and manufacture of the main quadrupole elements is divided between Fermilab and KEK, Fermilab alone is responsible for the design and final assembly of the cryostat for the LHC inner triplets. This paper describes the experience gained during fabrication of the first complete Q2 magnets, the alignment operation and results, and the cryogenic performance of the magnet on the test stand at Fermilab. 4 Refs. |
---|