Cargando…
Toric Geometry, Sasaki-Einstein Manifolds and a New Infinite Class of AdS/CFT Duals
Recently an infinite family of explicit Sasaki-Einstein metrics Y^{p,q} on S^2 x S^3 has been discovered, where p and q are two coprime positive integers, with q<p. These give rise to a corresponding family of Calabi-Yau cones, which moreover are toric. Aided by several recent results in toric ge...
Autores principales: | Martelli, D, Sparks, J |
---|---|
Lenguaje: | eng |
Publicado: |
2004
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/s00220-005-1425-3 http://cds.cern.ch/record/807411 |
Ejemplares similares
-
The Geometric Dual of a-maximisation for Toric Sasaki-Einstein Manifolds
por: Martelli, D., et al.
Publicado: (2005) -
Sasaki-Einstein Manifolds and Volume Minimisation
por: Martelli, D, et al.
Publicado: (2006) -
Toric Sasaki-Einstein metrics on $S^2 x S^3$
por: Martelli, D, et al.
Publicado: (2005) -
An Infinite Family of Superconformal Quiver Gauge Theories with Sasaki-Einstein Duals
por: Benvenuti, S, et al.
Publicado: (2004) -
Emergent Sasaki-Einstein geometry and AdS/CFT
por: Berman, Robert J., et al.
Publicado: (2022)