Cargando…
Reflexive Numbers and Berger Graphs from Calabi-Yau Spaces
A novel relation between number theory and recently found Berger graphs is studied. The Berger graphs under investigation are constructed mainly for the CY_3 space. The method of analysis is based on the slice classification of CY_l polyhedra in the so-called Universal Calabi-Yau algebra. The concep...
Autores principales: | Lipatov, L.N., Sabio Vera, Agustin, Velizhanin, V.N., Volkov, G.G. |
---|---|
Lenguaje: | eng |
Publicado: |
2005
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1142/S0217751X06031326 http://cds.cern.ch/record/815503 |
Ejemplares similares
-
The Classification of the Simply Laced Berger Graphs from Calabi-Yau $CY_3$ spaces
por: Ellis, John R., et al.
Publicado: (2004) -
Ternary numbers and algebras. Reflexive numbers and Berger graphs
por: Dubrovski, Alexey, et al.
Publicado: (2006) -
From Galois theory towards Berger-Calabi-yau geometry and new symmetries
por: Aglietti, U
Publicado: (2004) -
Planar diagrams and Calabi-Yau spaces
por: Ferrari, F
Publicado: (2003) -
Universal Calabi-Yau Algebra: Towards an Unification of Complex Geometry
por: Volkov, G
Publicado: (2002)