Cargando…
The Geometric Dual of a-maximisation for Toric Sasaki-Einstein Manifolds
We show that the Reeb vector, and hence in particular the volume, of a Sasaki-Einstein metric on the base of a toric Calabi-Yau cone of complex dimension n may be computed by minimising a function Z on R^n which depends only on the toric data that defines the singularity. In this way one can extract...
Autores principales: | Martelli, D., Sparks, J., Yau, Shing-Tung |
---|---|
Lenguaje: | eng |
Publicado: |
2005
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/s00220-006-0087-0 http://cds.cern.ch/record/829277 |
Ejemplares similares
-
Sasaki-Einstein Manifolds and Volume Minimisation
por: Martelli, D, et al.
Publicado: (2006) -
Toric Geometry, Sasaki-Einstein Manifolds and a New Infinite Class of AdS/CFT Duals
por: Martelli, D, et al.
Publicado: (2004) -
Toric Sasaki-Einstein metrics on $S^2 x S^3$
por: Martelli, D, et al.
Publicado: (2005) -
Obstructions to the Existence of Sasaki-Einstein Metrics
por: Gauntlett, Jerome P., et al.
Publicado: (2006) -
Dual Giant Gravitons in Sasaki-Einstein Backgrounds
por: Martelli, Dario, et al.
Publicado: (2006)