Cargando…
A perturbative study of two four-quark operators in finite volume renormalization schemes
Starting from the QCD Schroedinger functional (SF), we define a family of renormalization schemes for two four-quark operators, which are, in the chiral limit, protected against mixing with other operators. With the appropriate flavour assignments these operators can be interpreted as part of either...
Autores principales: | , , |
---|---|
Lenguaje: | eng |
Publicado: |
2005
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1088/1126-6708/2006/03/089 http://cds.cern.ch/record/834789 |
Sumario: | Starting from the QCD Schroedinger functional (SF), we define a family of renormalization schemes for two four-quark operators, which are, in the chiral limit, protected against mixing with other operators. With the appropriate flavour assignments these operators can be interpreted as part of either the $\Delta F=1$ or $\Delta F=2$ effective weak Hamiltonians. In view of lattice QCD with Wilson-type quarks, we focus on the parity odd components of the operators, since these are multiplicatively renormalized both on the lattice and in continuum schemes. We consider 9 different SF schemes and relate them to commonly used continuum schemes at one-loop order of perturbation theory. In this way the two-loop anomalous dimensions in the SF schemes can be inferred. As a by-product of our calculation we also obtain the one-loop cutoff effects in the step-scaling functions of the respective renormalization constants, for both O(a) improved and unimproved Wilson quarks. Our results will be needed in a separate study of the non-perturbative scale evolution of these operators. |
---|