Cargando…

Entropy Analysis in $\pi^{+}p$ and $K^{+}p$ Collisions at $\sqrt{s}=22$ GeV

The entropy properties are analyzed by Ma's coincidence method in $\pi^{+}p$ and $K^{+}p$ collisions of the NA22 experiment at 250 GeV/$c$ incident momentum. By using the Rényi entropies, we test the scaling law and additivity properties in rapidity space. The behavior of the Rényi entropies as...

Descripción completa

Detalles Bibliográficos
Autores principales: Atayan, M.R., Bai, Yu-ting, De Wolf, E.A., Endler, A.M.F., Fu, Jing-hua, Gulkanyan, H., Hakobyan, R., Kittel, W., Liu, Lian-shou, Li, Zhi-ming, Metreveli, Z.V., Metzger, W.J., Smirnova, L.N., Tikhonova, L.A., Tomaradze, A.G., Wu, Yuan-fang, Zotkin, S.A.
Lenguaje:eng
Publicado: 2005
Materias:
Acceso en línea:https://dx.doi.org/10.1063/1.2197406
http://cds.cern.ch/record/841159
Descripción
Sumario:The entropy properties are analyzed by Ma's coincidence method in $\pi^{+}p$ and $K^{+}p$ collisions of the NA22 experiment at 250 GeV/$c$ incident momentum. By using the Rényi entropies, we test the scaling law and additivity properties in rapidity space. The behavior of the Rényi entropies as a function of the average number of particles is investigated. The results are compared with those from the Pythia Monte Carlo event generator.