Cargando…
Semilattices of finitely generated ideals of exchange rings with finite stable rank
We find a distributive (v, 0, 1)-semilattice S of size $ aleph\_1$ that is not isomorphic to the maximal semilattice quotient of any Riesz monoid endowed with an order-unit of finite stable rank. We thus obtain solutions to various open problems in ring theory and in lattice theory. In particular: -...
Autor principal: | Wehrung, F |
---|---|
Lenguaje: | eng |
Publicado: |
2005
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/853791 |
Ejemplares similares
-
Simultaneous representations of semilattices by lattices with permutable congruences
por: Tuma, J, et al.
Publicado: (2005) -
Non-extendability of semilattice-valued measures on partially ordered sets
por: Wehrung, F
Publicado: (2005) -
Functorial liftings of distributive semilattices by distances of small type
por: Ruzicka, P, et al.
Publicado: (2005) -
Finite rank torsion free Abelian groups and rings
por: Arnold, David M
Publicado: (1982) -
On finite rank operators and preannihilators
por: Azoff, Edward A
Publicado: (1986)