Cargando…
Congruence lattices of free lattices in non-distributive varieties
We prove that for any free lattice F with at least $\aleph\_2$ generators in any non-distributive variety of lattices, there exists no sectionally complemented lattice L with congruence lattice isomorphic to the one of F. This solves a question formulated by Gr\"{a}tzer and Schmidt in 1962. Thi...
Autores principales: | Ploscica, M, Tuma, J, Wehrung, F |
---|---|
Lenguaje: | eng |
Publicado: |
2005
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/853819 |
Ejemplares similares
-
Simultaneous representations of semilattices by lattices with permutable congruences
por: Tuma, J, et al.
Publicado: (2005) -
Congruence amalgamation of lattices
por: Grätzer, G, et al.
Publicado: (2005) -
A uniform refinement property for congruence lattices
por: Wehrung, F
Publicado: (2005) -
Shape of congruence lattices
por: Kearnes, Keith A, et al.
Publicado: (2013) -
Varieties of lattices
por: Jipsen, Peter, et al.
Publicado: (1992)