Cargando…
A five element basis for the uncountable linear orders
In this paper I will show that it is relatively consistent with the usual axioms of mathematics (ZFC) together with a strong form of the axiom of infinity (the existence of a supercompact cardinal) that the class of uncountable linear orders has a five element basis. In fact such a basis follows fro...
Autor principal: | |
---|---|
Lenguaje: | eng |
Publicado: |
2005
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/853825 |
Sumario: | In this paper I will show that it is relatively consistent with the usual axioms of mathematics (ZFC) together with a strong form of the axiom of infinity (the existence of a supercompact cardinal) that the class of uncountable linear orders has a five element basis. In fact such a basis follows from the Proper Forcing Axiom, a strong form of the Baire Category Theorem. The elements are X, omega_1, omega_1^*, C, C^* where X is any suborder of the reals of cardinality aleph_1 and C is any Countryman line. This confirms a longstanding conjecture of Shelah. |
---|