Cargando…
Functorial liftings of distributive semilattices by distances of small type
We prove that every distributive algebraic lattice with at most $\aleph\_1$ compact elements is isomorphic to the normal subgroup lattice of some group and to the submodule lattice of some right module. The $\aleph\_1$ bound is optimal, as we find a distributive algebraic lattice $D$ with $\aleph\_2...
Autores principales: | Ruzicka, P, Tuma, J, Wehrung, F |
---|---|
Lenguaje: | eng |
Publicado: |
2005
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/854038 |
Ejemplares similares
-
Simultaneous representations of semilattices by lattices with permutable congruences
por: Tuma, J, et al.
Publicado: (2005) -
Non-extendability of semilattice-valued measures on partially ordered sets
por: Wehrung, F
Publicado: (2005) -
Semilattices of finitely generated ideals of exchange rings with finite stable rank
por: Wehrung, F
Publicado: (2005) -
Noncommutative geometry: a functorial approach
por: Nikolaev, Igor V
Publicado: (2017) -
Functoriality of real analytic torsion form
por: Ma, X
Publicado: (1999)