Cargando…
A $K\_0$-avoiding dimension group with an order-unit of index two
We prove that there exists a dimension group $G$ whose positive cone is not isomorphic to the dimension monoid Dim$L$ of any lattice $L$. The dimension group $G$ has an order-unit, and can be taken of any cardinality greater than or equal to $\aleph\_2$. As to determining the positive cones of dimen...
Autor principal: | Wehrung, F |
---|---|
Lenguaje: | eng |
Publicado: |
2005
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/854039 |
Ejemplares similares
-
Complete dimension theory of partially ordered systems with equivalence and orthogonality
por: Goodearl, KR, et al.
Publicado: (2005) -
Non-extendability of semilattice-valued measures on partially ordered sets
por: Wehrung, F
Publicado: (2005) -
K-theory of finite groups and orders
por: Swan, Richard G, et al.
Publicado: (1970) -
A uniform refinement property for congruence lattices
por: Wehrung, F
Publicado: (2005) -
Semilattices of finitely generated ideals of exchange rings with finite stable rank
por: Wehrung, F
Publicado: (2005)