Cargando…

Surface energy of very neutron rich nuclei

For a microscopic model calculation of the nuclear surface-energy coefficient sigma the surface energy is defined as the energy loss of an uncharged, semiinfinite (inhomogeneous) two-component system compared to an infinite (homogeneous) system with the same particle asymmetry delta . Using the Thom...

Descripción completa

Detalles Bibliográficos
Autor principal: Von Groote, H
Lenguaje:eng
Publicado: CERN 1976
Materias:
Acceso en línea:https://dx.doi.org/10.5170/CERN-1976-013.595
http://cds.cern.ch/record/873895
Descripción
Sumario:For a microscopic model calculation of the nuclear surface-energy coefficient sigma the surface energy is defined as the energy loss of an uncharged, semiinfinite (inhomogeneous) two-component system compared to an infinite (homogeneous) system with the same particle asymmetry delta . Using the Thomas-Fermi model the calculations are performed for a series of systems with increasing delta , starting from symmetric matter ( delta =0) and extending beyond the drip line of the neutrons, until the system undergoes a phase transition to a homogeneous system. The results for the surface energy as well as for the neutron skin and for the surface diffuseness are compared to the macroscopic approach of the Droplet Model (DM), which turns out to be a good approximation for small asymmetries typical for the region of the valley of beta -stability. For larger asymmetries, close to the drip lines, terms of higher order than contained in the DM approach are no longer negligible. Beyond the drip lines the pressure of the outside gas plays the dominant role, which, however, is not accounted for in the DM. (10 refs).