Cargando…

Adiabatic limit in perturbation theory

It is shown that, with correct mass and wave function renormalization, the time-ordered products for Wick polynomials T(L(y/sub 1/)...L(y/sub n/)) constructed by a method outlined in a previous paper (Epstein and Glaser, 1970) are such that the vectors of the form integral T(L(y/sub 1/)...L(y/sub n/...

Descripción completa

Detalles Bibliográficos
Autores principales: Epstein, H, Glaser, Vladimir Jurko
Lenguaje:eng
Publicado: 1976
Materias:
Acceso en línea:https://dx.doi.org/10.1007/978-94-010-1490-8_7
http://cds.cern.ch/record/874058
_version_ 1780907774411014144
author Epstein, H
Glaser, Vladimir Jurko
author_facet Epstein, H
Glaser, Vladimir Jurko
author_sort Epstein, H
collection CERN
description It is shown that, with correct mass and wave function renormalization, the time-ordered products for Wick polynomials T(L(y/sub 1/)...L(y/sub n/)) constructed by a method outlined in a previous paper (Epstein and Glaser, 1970) are such that the vectors of the form integral T(L(y/sub 1/)...L(y/sub n/)) g(y/sub 1/)...g(y/sub n/) psi dy/sub 1/...dy/sub n/ have limits when g tends to a constant, provided psi is chosen in a suitable dense domain. It follows that the S-matrix has unitary adiabatic limit as an operator-valued formal power series in Fock space. (4 refs).
id cern-874058
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 1976
record_format invenio
spelling cern-8740582019-09-30T06:29:59Zdoi:10.1007/978-94-010-1490-8_7http://cds.cern.ch/record/874058engEpstein, HGlaser, Vladimir JurkoAdiabatic limit in perturbation theoryParticle Physics - TheoryIt is shown that, with correct mass and wave function renormalization, the time-ordered products for Wick polynomials T(L(y/sub 1/)...L(y/sub n/)) constructed by a method outlined in a previous paper (Epstein and Glaser, 1970) are such that the vectors of the form integral T(L(y/sub 1/)...L(y/sub n/)) g(y/sub 1/)...g(y/sub n/) psi dy/sub 1/...dy/sub n/ have limits when g tends to a constant, provided psi is chosen in a suitable dense domain. It follows that the S-matrix has unitary adiabatic limit as an operator-valued formal power series in Fock space. (4 refs).CERN-TH-1344oai:cds.cern.ch:8740581976
spellingShingle Particle Physics - Theory
Epstein, H
Glaser, Vladimir Jurko
Adiabatic limit in perturbation theory
title Adiabatic limit in perturbation theory
title_full Adiabatic limit in perturbation theory
title_fullStr Adiabatic limit in perturbation theory
title_full_unstemmed Adiabatic limit in perturbation theory
title_short Adiabatic limit in perturbation theory
title_sort adiabatic limit in perturbation theory
topic Particle Physics - Theory
url https://dx.doi.org/10.1007/978-94-010-1490-8_7
http://cds.cern.ch/record/874058
work_keys_str_mv AT epsteinh adiabaticlimitinperturbationtheory
AT glaservladimirjurko adiabaticlimitinperturbationtheory