Cargando…
Self-consistent study of nuclei far from stability with the energy density method
The self-consistent energy density method has been shown to give good results with a small number of parameters for the calculation of nuclear masses, radii, deformations, neutron skins, shell and sub- shell effects. It is here used to study the properties of nuclei far from stability, like densitie...
Autor principal: | |
---|---|
Lenguaje: | eng |
Publicado: |
CERN
1981
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.5170/CERN-1981-009.81 http://cds.cern.ch/record/878069 |
Sumario: | The self-consistent energy density method has been shown to give good results with a small number of parameters for the calculation of nuclear masses, radii, deformations, neutron skins, shell and sub- shell effects. It is here used to study the properties of nuclei far from stability, like densities, shell structure, even-odd mass differences, single-particle potentials and nuclear deformations. A few possible consequences of the results for astrophysical problems are briefly considered. The predictions of the model in the super- heavy region are summarised. (34 refs). |
---|