Cargando…
Equivalence theorems for massive spin-one particles
Massive spin-one particles have been described by means of an antisymmetric second-rank tensor field T/sub mu nu /(x), which transforms under the (1, 0)(+)(0, 1) representation of the Lorentz group. It has been shown that the above descriptions are equivalent in the free-field case but not in the pr...
Autor principal: | |
---|---|
Lenguaje: | eng |
Publicado: |
1973
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/880565 |
_version_ | 1780908148000817152 |
---|---|
author | Kyriakopoulos, E |
author_facet | Kyriakopoulos, E |
author_sort | Kyriakopoulos, E |
collection | CERN |
description | Massive spin-one particles have been described by means of an antisymmetric second-rank tensor field T/sub mu nu /(x), which transforms under the (1, 0)(+)(0, 1) representation of the Lorentz group. It has been shown that the above descriptions are equivalent in the free-field case but not in the presence of interactions. Recently Jenkins (1972) following a different way of quantization, has also shown that the descriptions are inequivalent if interactions are introduced, and to construct equivalent theories one has to add certain contact-type terms. Some of Jenkins comments are shown to be due to misunderstanding of the approach to quantization, and the equivalence theorem he discusses is shown to be the essence of the author's effective interaction Hamiltonian. (7 refs). |
id | cern-880565 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 1973 |
record_format | invenio |
spelling | cern-8805652019-09-30T06:29:59Zhttp://cds.cern.ch/record/880565engKyriakopoulos, EEquivalence theorems for massive spin-one particlesParticle Physics - TheoryMassive spin-one particles have been described by means of an antisymmetric second-rank tensor field T/sub mu nu /(x), which transforms under the (1, 0)(+)(0, 1) representation of the Lorentz group. It has been shown that the above descriptions are equivalent in the free-field case but not in the presence of interactions. Recently Jenkins (1972) following a different way of quantization, has also shown that the descriptions are inequivalent if interactions are introduced, and to construct equivalent theories one has to add certain contact-type terms. Some of Jenkins comments are shown to be due to misunderstanding of the approach to quantization, and the equivalence theorem he discusses is shown to be the essence of the author's effective interaction Hamiltonian. (7 refs).oai:cds.cern.ch:8805651973 |
spellingShingle | Particle Physics - Theory Kyriakopoulos, E Equivalence theorems for massive spin-one particles |
title | Equivalence theorems for massive spin-one particles |
title_full | Equivalence theorems for massive spin-one particles |
title_fullStr | Equivalence theorems for massive spin-one particles |
title_full_unstemmed | Equivalence theorems for massive spin-one particles |
title_short | Equivalence theorems for massive spin-one particles |
title_sort | equivalence theorems for massive spin-one particles |
topic | Particle Physics - Theory |
url | http://cds.cern.ch/record/880565 |
work_keys_str_mv | AT kyriakopoulose equivalencetheoremsformassivespinoneparticles |