Cargando…

The neural network approach to parton distributions

We introduce the neural network approach to global fits of parton distrubution functions. First we review previous work on unbiased parametrizations of deep-inelastic structure functions with faithful estimation of their uncertainties, and then we summarize the current status of neural network parto...

Descripción completa

Detalles Bibliográficos
Autores principales: Del Debbio, L., Forte, S., Latorre, J.I., Piccione, Andrea, Rojo, Joan
Lenguaje:eng
Publicado: 2005
Materias:
Acceso en línea:http://cds.cern.ch/record/882730
_version_ 1780908270954741760
author Del Debbio, L.
Forte, S.
Latorre, J.I.
Piccione, Andrea
Rojo, Joan
author_facet Del Debbio, L.
Forte, S.
Latorre, J.I.
Piccione, Andrea
Rojo, Joan
author_sort Del Debbio, L.
collection CERN
description We introduce the neural network approach to global fits of parton distrubution functions. First we review previous work on unbiased parametrizations of deep-inelastic structure functions with faithful estimation of their uncertainties, and then we summarize the current status of neural network parton distribution fits.
id cern-882730
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2005
record_format invenio
spelling cern-8827302022-08-17T08:43:59Zhttp://cds.cern.ch/record/882730engDel Debbio, L.Forte, S.Latorre, J.I.Piccione, AndreaRojo, JoanThe neural network approach to parton distributionsParticle Physics - PhenomenologyWe introduce the neural network approach to global fits of parton distrubution functions. First we review previous work on unbiased parametrizations of deep-inelastic structure functions with faithful estimation of their uncertainties, and then we summarize the current status of neural network parton distribution fits.We introduce the neural network approach to global fits of parton distrubution functions. First we review previous work on unbiased parametrizations of deep-inelastic structure functions with faithful estimation of their uncertainties, and then we summarize the current status of neural network parton distribution fits.hep-ph/0509059oai:cds.cern.ch:8827302005-09-07
spellingShingle Particle Physics - Phenomenology
Del Debbio, L.
Forte, S.
Latorre, J.I.
Piccione, Andrea
Rojo, Joan
The neural network approach to parton distributions
title The neural network approach to parton distributions
title_full The neural network approach to parton distributions
title_fullStr The neural network approach to parton distributions
title_full_unstemmed The neural network approach to parton distributions
title_short The neural network approach to parton distributions
title_sort neural network approach to parton distributions
topic Particle Physics - Phenomenology
url http://cds.cern.ch/record/882730
work_keys_str_mv AT deldebbiol theneuralnetworkapproachtopartondistributions
AT fortes theneuralnetworkapproachtopartondistributions
AT latorreji theneuralnetworkapproachtopartondistributions
AT piccioneandrea theneuralnetworkapproachtopartondistributions
AT rojojoan theneuralnetworkapproachtopartondistributions
AT deldebbiol neuralnetworkapproachtopartondistributions
AT fortes neuralnetworkapproachtopartondistributions
AT latorreji neuralnetworkapproachtopartondistributions
AT piccioneandrea neuralnetworkapproachtopartondistributions
AT rojojoan neuralnetworkapproachtopartondistributions