Cargando…
Neural network approach to parton distributions fitting
We will show an application of neural networks to extract information on the structure of hadrons. A Monte Carlo over experimental data is performed to correctly reproduce data errors and correlations. A neural network is then trained on each Monte Carlo replica via a genetic algorithm. Results on t...
Autores principales: | , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2005
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1016/j.nima.2005.11.206 http://cds.cern.ch/record/882738 |
_version_ | 1780908271189622784 |
---|---|
author | Piccione, Andrea Del Debbio, Luigi Forte, Stefano Latorre, Jose I. Rojo, Joan |
author_facet | Piccione, Andrea Del Debbio, Luigi Forte, Stefano Latorre, Jose I. Rojo, Joan |
author_sort | Piccione, Andrea |
collection | CERN |
description | We will show an application of neural networks to extract information on the structure of hadrons. A Monte Carlo over experimental data is performed to correctly reproduce data errors and correlations. A neural network is then trained on each Monte Carlo replica via a genetic algorithm. Results on the proton and deuteron structure functions, and on the nonsinglet parton distribution will be shown. |
id | cern-882738 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2005 |
record_format | invenio |
spelling | cern-8827382023-03-14T20:25:35Zdoi:10.1016/j.nima.2005.11.206http://cds.cern.ch/record/882738engPiccione, AndreaDel Debbio, LuigiForte, StefanoLatorre, Jose I.Rojo, JoanNeural network approach to parton distributions fittingParticle Physics - PhenomenologyWe will show an application of neural networks to extract information on the structure of hadrons. A Monte Carlo over experimental data is performed to correctly reproduce data errors and correlations. A neural network is then trained on each Monte Carlo replica via a genetic algorithm. Results on the proton and deuteron structure functions, and on the nonsinglet parton distribution will be shown.We will show an application of neural networks to extract information on the structure of hadrons. A Monte Carlo over experimental data is performed to correctly reproduce data errors and correlations. A neural network is then trained on each Monte Carlo replica via a genetic algorithm. Results on the proton and deuteron structure functions, and on the nonsinglet parton distribution will be shown.hep-ph/0509067oai:cds.cern.ch:8827382005-09-07 |
spellingShingle | Particle Physics - Phenomenology Piccione, Andrea Del Debbio, Luigi Forte, Stefano Latorre, Jose I. Rojo, Joan Neural network approach to parton distributions fitting |
title | Neural network approach to parton distributions fitting |
title_full | Neural network approach to parton distributions fitting |
title_fullStr | Neural network approach to parton distributions fitting |
title_full_unstemmed | Neural network approach to parton distributions fitting |
title_short | Neural network approach to parton distributions fitting |
title_sort | neural network approach to parton distributions fitting |
topic | Particle Physics - Phenomenology |
url | https://dx.doi.org/10.1016/j.nima.2005.11.206 http://cds.cern.ch/record/882738 |
work_keys_str_mv | AT piccioneandrea neuralnetworkapproachtopartondistributionsfitting AT deldebbioluigi neuralnetworkapproachtopartondistributionsfitting AT fortestefano neuralnetworkapproachtopartondistributionsfitting AT latorrejosei neuralnetworkapproachtopartondistributionsfitting AT rojojoan neuralnetworkapproachtopartondistributionsfitting |