Cargando…
Non-extendability of semilattice-valued measures on partially ordered sets
For a distributive join-semilattice S with zero, a S-valued poset measure on a poset P is a map m:PxP->S such that m(x,z) <= m(x,y)vm(y,z), and x <= y implies that m(x,y)=0, for all x,y,z in P. In relation with congruence lattice representation problems, we consider the problem whether such...
Autor principal: | Wehrung, F |
---|---|
Lenguaje: | eng |
Publicado: |
2005
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/903521 |
Ejemplares similares
-
Simultaneous representations of semilattices by lattices with permutable congruences
por: Tuma, J, et al.
Publicado: (2005) -
Functorial liftings of distributive semilattices by distances of small type
por: Ruzicka, P, et al.
Publicado: (2005) -
Semilattices of finitely generated ideals of exchange rings with finite stable rank
por: Wehrung, F
Publicado: (2005) -
The Pontryagin duality of compact o-dimensional semilattices and its applications
por: Hofmann, Karl Heinrich, et al.
Publicado: (1974) -
Complete dimension theory of partially ordered systems with equivalence and orthogonality
por: Goodearl, KR, et al.
Publicado: (2005)